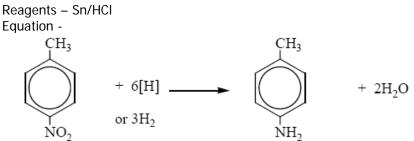

<u>Topic 9 – Synthesis, Analysis and Chromatography</u> <u>Revision Notes</u>

1) Synthesis

- A synthesis is a series of reactions giving a desired chemical product
- Answering questions on synthesis requires a good knowledge of the reactions in CHEM4 (and CHEM2) i.e. reaction type, reagents and conditions
- A few favourite sequences include:
 - o Nitration of benzene followed by reduction using Sn/HCI
 - Substitution of a halogen by CN⁻ to lengthen a carbon chain
 - Acylation of a benzene ring followed by reduction using LiAlH₄ to give an alcohol

a) Example question 1

Consider the following reaction sequence.


1) For Step 1, name the mechanism and give the reagents involved.

Answer:

Mechanism - electrophilic substitution Reagents - concentrated HNO $_3$ and concentrated H $_2SO_4$

2) For Step 2, give a reagent or combination of reagents. Write an equation for this reaction using [H] to represent the reductant.

Answer:

Source: AQA paper June 2005

b) Example question 2

Compound C, $H_2N(CH_2)_4NH_2$, can be synthesised from ethene in three steps as shown

below.

Step 1		Step 2		Step 3	
Ethene	Compound	\rightarrow	Compound	\longrightarrow	Compound
addition	Α	substitution	В		С
reaction		reaction	$C_4H_4N_2$	H_2	$_2N(CH_2)_4NH_2$

1) Name compound C and draw a structure for each of compounds A and B.

Answer:

 $\begin{array}{l} Compound \ C = 1,4 \mbox{-} diaminobutane \\ Compound \ A = BrCH_2CH_2Br \ or \ CICH_2CH_2CI \\ Compound \ B = NCCH_2CH_2CN \end{array}$

2) State the reagent(s) required for each step and name the type of reaction involved in the conversion of B into C.

Answer:

Step 1 – Br_2 or Cl_2 Step 2 – KCN Step 3 – LiAlH₄ Type of reaction - reduction

Source: AQA paper June 2002

2) <u>Chromatography</u>

- Chromatography is a technique for separating mixtures
- It separates the components of the mixture between a mobile phase and a stationary phase
- Separation depends on the balance between solubility in the mobile phase and retention in the stationary phase

a) Gas-liquid Chromatography

- Used to separate mixtures of volatile liquids (liquids with low boiling points)
- Mobile phase is a carrier gas e.g. nitrogen (which is inert)
- Sample mixture is injected into machine
- The retention time is the characteristic time it takes for a particular substance to pass through the system under set conditions
- The output is a graph of detector response (y-axis) against retention time (xaxis). This provides a spectrum of peaks for a sample representing the compounds present in a sample eluting from the column at different times
- Components of the mixture are identified by their retention times

b) <u>Column Chromatography</u>

- Stationary phase is a solid such as alumina or silica
- Mobile phase is a solvent
- Amino acids can be separated by column chromatography

3) <u>Chemical Tests</u>

- Chemical tests can be used to distinguish between compounds
- Answering questions on analysis requires a good knowledge of characteristic tests

Functional group	Test and result		
Alkene	Decolourises bromine water		
Carboxylic acid	Effervesces with Na ₂ CO ₃ (aq) or NaHCO ₃ (aq)		
Aldehyde	Silver mirror with Tollens' reagent		
Haloalkane	Add NaOH(aq) then acidified AgNO ₃ (aq) White ppt of AgCI(s)/cream ppt of AgBr(s)/ yellow ppt of AgI(s) Note: without NaOH, no ppt for chloroalkane		
Acyl chloride	With AgNO ₃ (aq), white ppt of AgCl(s) & misty fumes of HCl		
Primary and secondary alcohols	Add acidified potassium dichromate. Orange to green		
Alcohols	Warm with CH ₃ COOH and a little conc H ₂ SO ₄ Sweet smell of ester		

4) Nucleophilic addition and optical isomerism

• Nucleophilic addition to aldehydes and ketones can produce racemic mixtures of optical isomers (racemates) e.g.

$\begin{array}{l} \mathsf{CH}_3\mathsf{CHO} + \mathsf{HCN} \rightarrow \mathsf{CH}_3\mathsf{CH}(\mathsf{OH})\mathsf{CN} \\ \mathsf{CH}_3\mathsf{COCH}_2\mathsf{CH}_3 + 2[\mathsf{H}] \rightarrow \mathsf{CH}_3\mathsf{CH}(\mathsf{OH})\mathsf{CH}_2\mathsf{CH}_3 \end{array}$

- This happens because the carbonyl group is planar >C=O
- Attack by the nucleophile is equally likely from each side
- o Equal amounts of the two optical isomers will be formed